Fast hashing onto pairing-friendly elliptic curves over ternary fields
نویسندگان
چکیده
We propose a fast cryptographic hash algorithm that maps arbitrary messages onto points of pairing-friendly elliptic curves defined over F3m , a core operation in many pairing-based cryptosystems. Our scheme runs in time O(m2), while the best previous algorithm for this task runs in time O(m3). Experimental data confirms the speedup by a factor O(m), or approximately a hundred times for practical m values. We then describe how to modify BLS compact signatures to use the new hash algorithm and show that the resulting scheme is secure in the random oracle model.
منابع مشابه
Fast Hashing to G2 on Pairing-Friendly Curves
When using pairing-friendly ordinary elliptic curves over prime fields to implement identity-based protocols, there is often a need to hash identities to points on one or both of the two elliptic curve groups of prime order r involved in the pairing. Of these G1 is a group of points on the base field E(Fp) and G2 is instantiated as a group of points with coordinates on some extension field, ove...
متن کاملConstruction of Pairing-Friendly Elliptic Curves
The aim of this paper is to construct pairing friendly elliptic curves. In this paper, we explain a method of finding the polynomials representing √−D and ζk over the field containing √−D and ζk and how to construct a pairing friendly elliptic curves over the cyclotomic fields containing Q(ζk, √−D) for arbitrary k and D by CP method. By using the factorization of the cyclotomic polynomial combi...
متن کاملOn Efficient Pairings on Elliptic Curves over Extension Fields
In implementation of elliptic curve cryptography, three kinds of finite fields have been widely studied, i.e. prime field, binary field and optimal extension field. In pairing-based cryptography, however, pairingfriendly curves are usually chosen among ordinary curves over prime fields and supersingular curves over extension fields with small characteristics. In this paper, we study pairings on...
متن کاملConstructing pairing-friendly hyperelliptic curves using Weil restriction
A pairing-friendly curve is a curve over a finite field whose Jacobian has small embedding degree with respect to a large prime-order subgroup. In this paper we construct pairing-friendly genus 2 curves over finite fields Fq whose Jacobians are ordinary and simple, but not absolutely simple. We show that constructing such curves is equivalent to constructing elliptic curves over Fq that become ...
متن کاملEffective Polynomial Families for Generating More Pairing-Friendly Elliptic Curves
Finding suitable non-supersingular elliptic curves becomes an important issue for the growing area of pairing-based cryptosystems. For this purpose, many methods have been proposed when embedding degree k and cofactor h are taken different values. In this paper we propose a new method to find pairing-friendly elliptic curves without restrictions on embedding degree k and cofactor h. We propose ...
متن کامل